
Job-tree
benedict@soe.ucsc.edu

Wednesday, February 2, 2011

mailto:Benedict@soe.ucsc.edu
mailto:Benedict@soe.ucsc.edu

First off...

• Get it at github...

• https://benedictpaten@github.com/benedictpaten/jobTree.git

• git@github.com:benedictpaten/jobTree.git

Wednesday, February 2, 2011

https://benedictpaten@github.com/benedictpaten/jobTree.git
https://benedictpaten@github.com/benedictpaten/jobTree.git
mailto:git@github.com
mailto:git@github.com

Traditional Batch System

• Composed of a series of
‘jobs’

• Single ‘setup’ job

• Parallel ‘child’ job

• Single ‘follow on’ job
. . . .1 2 N

setup follow on

Wednesday, February 2, 2011

Traditional Batch System

• Setup creates inputs for
children

• Children create output

• Follow on aggregates
output1 2 N

setup follow on

Wednesday, February 2, 2011

Traditional Batch System
• Jobs can get lost at any

point during their
runtime.

• To maintain ‘atomicity’
jobs must always be
restartable, therefore:

• No job must alter its
own input.

• The follow on ‘cleans
up’ the setup job

. . . .1 2 N

setup follow on

Wednesday, February 2, 2011

Traditional Batch System Summary

• Traditional batch system can be described, from the users point
of view, as a parallel ‘for’ loop.

• Robust pipelines must maintain atomicity

Wednesday, February 2, 2011

Job-tree

• For loops are useful, but what if..

• I want to further parallelise a ‘child’ job?

• I want to do this selectively?

• I want to do this dynamically and recursively?

Wednesday, February 2, 2011

Job-tree

• Job-tree allows
you to create
arbitrary ‘job-
trees’

Wednesday, February 2, 2011

Job-tree

• Let’s walk
through an
example.

Wednesday, February 2, 2011

Job-tree

• The first job is
issued to the
system (grey)

• White boxes
are jobs not yet
created.

Wednesday, February 2, 2011

Job-tree

• The first job is
run (green)

Wednesday, February 2, 2011

Job-tree
• It completes

successively and
creates some
children and a
follow on.

• It is blue,
indicating it has
children/follow
ons not yet
complete.

Wednesday, February 2, 2011

Job-tree

• The children
are run

Wednesday, February 2, 2011

Job-tree

• Some create
children and
follow ons.

• Some do not,
they are now
complete
(coloured
black)

Wednesday, February 2, 2011

Job-tree

• More children
are run

Wednesday, February 2, 2011

Job-tree

• Most are
finished, one
creates more
children, and
one follow can
be run

Wednesday, February 2, 2011

Job-tree

• etc, etc..

Wednesday, February 2, 2011

Job-tree

• etc, etc..

Wednesday, February 2, 2011

Job-tree

• etc, etc..

Wednesday, February 2, 2011

Job-tree

• etc, etc..

Wednesday, February 2, 2011

Job-tree

• etc, etc..

Wednesday, February 2, 2011

Job-tree

• Oh no! A job
failed (coloured
red)

• It will be
restarted a
preset
number of
times.

Wednesday, February 2, 2011

Job-tree
• If it still fails

Job-tree will
continue as
far as it can,
then return,
so you can fix
the job.

• Job-tree will
then re-start
from that
point.

Wednesday, February 2, 2011

Job-tree

• So now we’re
running again..

Wednesday, February 2, 2011

Job-tree

• etc, etc..

Wednesday, February 2, 2011

Job-tree

• etc, etc..

Wednesday, February 2, 2011

Job-tree

• And we’re
done.

Wednesday, February 2, 2011

Job-tree/Script-tree

• jobTree communicates by clunky XML files. Each job is passed a an
xml file, which it edits and when the job is complete this file is
processed.

• scriptTree removes this pain, you just inherit a ‘Target’ python class,
as follows (we’ll look at example for doing parallel merge sort).

Wednesday, February 2, 2011

Job-tree/Script-tree
import os
from workflow.jobTree.scriptTree.target import Target

class Setup(Target):
 """Sets up the sort.
 """
 def __init__(self, inputFile, N):
 Target.__init__(self, time=1, memory=1000000, cpu=1)
 self.inputFile = inputFile
 self.N = N

 def run(self):
 tempOutputFile = getTempFile(rootDir=self.getGlobalTempDir())
 self.addChildTarget(Down(self.inputFile, 0, os.path.getsize(self.inputFile),
self.N, tempOutputFile))
 self.setFollowOnTarget(Cleanup(tempOutputFile, self.inputFile))

Wednesday, February 2, 2011

Job-tree/Script-tree

Estimated runtime lets the
meta-scheduler be more

efficient

import os
from workflow.jobTree.scriptTree.target import Target

class Setup(Target):
 """Sets up the sort.
 """
 def __init__(self, inputFile, N):
 Target.__init__(self, time=1, memory=1000000, cpu=1)
 self.inputFile = inputFile
 self.N = N

 def run(self):
 tempOutputFile = getTempFile(rootDir=self.getGlobalTempDir())
 self.addChildTarget(Down(self.inputFile, 0, os.path.getsize(self.inputFile),
self.N, tempOutputFile))
 self.setFollowOnTarget(Cleanup(tempOutputFile, self.inputFile))

Wednesday, February 2, 2011

Job-tree/Script-tree
Memory (bytes) and cpu

requirements can be
specified

import os
from workflow.jobTree.scriptTree.target import Target

class Setup(Target):
 """Sets up the sort.
 """
 def __init__(self, inputFile, N):
 Target.__init__(self, time=1, memory=1000000, cpu=1)
 self.inputFile = inputFile
 self.N = N

 def run(self):
 tempOutputFile = getTempFile(rootDir=self.getGlobalTempDir())
 self.addChildTarget(Down(self.inputFile, 0, os.path.getsize(self.inputFile),
self.N, tempOutputFile))
 self.setFollowOnTarget(Cleanup(tempOutputFile, self.inputFile))

Wednesday, February 2, 2011

Job-tree/Script-tree

Run, where you create
children, a follow on and

do work

import os
from workflow.jobTree.scriptTree.target import Target

class Setup(Target):
 """Sets up the sort.
 """
 def __init__(self, inputFile, N):
 Target.__init__(self, time=1, memory=1000000, cpu=1)
 self.inputFile = inputFile
 self.N = N

 def run(self):
 tempOutputFile = getTempFile(rootDir=self.getGlobalTempDir())
 self.addChildTarget(Down(self.inputFile, 0, os.path.getsize(self.inputFile),
self.N, tempOutputFile))
 self.setFollowOnTarget(Cleanup(tempOutputFile, self.inputFile))

Wednesday, February 2, 2011

Job-tree/Script-tree

Creating a child

import os
from workflow.jobTree.scriptTree.target import Target

class Setup(Target):
 """Sets up the sort.
 """
 def __init__(self, inputFile, N):
 Target.__init__(self, time=1, memory=1000000, cpu=1)
 self.inputFile = inputFile
 self.N = N

 def run(self):
 tempOutputFile = getTempFile(rootDir=self.getGlobalTempDir())
 self.addChildTarget(Down(self.inputFile, 0, os.path.getsize(self.inputFile),
self.N, tempOutputFile))
 self.setFollowOnTarget(Cleanup(tempOutputFile, self.inputFile))

Wednesday, February 2, 2011

Job-tree/Script-tree

Creating the follow on

import os
from workflow.jobTree.scriptTree.target import Target

class Setup(Target):
 """Sets up the sort.
 """
 def __init__(self, inputFile, N):
 Target.__init__(self, time=1, memory=1000000, cpu=1)
 self.inputFile = inputFile
 self.N = N

 def run(self):
 tempOutputFile = getTempFile(rootDir=self.getGlobalTempDir())
 self.addChildTarget(Down(self.inputFile, 0, os.path.getsize(self.inputFile),
self.N, tempOutputFile))
 self.setFollowOnTarget(Cleanup(tempOutputFile, self.inputFile))

Wednesday, February 2, 2011

import os
from workflow.jobTree.scriptTree.target import Target

class Setup(Target):
 """Sets up the sort.
 """
 def __init__(self, inputFile, N):
 Target.__init__(self, time=1, memory=1000000, cpu=1)
 self.inputFile = inputFile
 self.N = N

 def run(self):
 tempOutputFile = getTempFile(rootDir=self.getGlobalTempDir())
 self.addChildTarget(Down(self.inputFile, 0, os.path.getsize(self.inputFile),
self.N, tempOutputFile))
 self.setFollowOnTarget(Cleanup(tempOutputFile, self.inputFile))

Job-tree/Script-tree

A global (visible to all machines on
the cluster) temporary directory

that exists for the life of the job, its
setup jobs and its follow ons.

Wednesday, February 2, 2011

GlobalTempDir

• A chain consists
of a founder, a
sequence of
successive
follow ons and
a closer.

• Non-trivial
chains are
coloured in
example

Wednesday, February 2, 2011

GlobalTempDir

• A ‘globalTempDir’
temporary
directory is
created for each
chain.

Wednesday, February 2, 2011

GlobalTempDir

• It is created just
before the founder
and deleted just
after the closer.

• It allows files to be
passed around
between follow ons
and their children.

Wednesday, February 2, 2011

Job-tree/Script-tree
#!/usr/bin/env python

"""A demonstration of jobTree. Sorts the lines of a file into ascending order by doing a parallel merge
sort.
"""
from optparse import OptionParser
import os
import shutil
from sonLib.bioio import getTempFile
from workflow.jobTree.scriptTree.target import Target
from workflow.jobTree.scriptTree.stack import Stack
from workflow.jobTree.test.sort.lib import merge, sort, copySubRangeOfFile, getMidPoint

class Setup(Target):
 """Sets up the sort.
 """
 def __init__(self, inputFile, N):
 Target.__init__(self, time=1, memory=1000000, cpu=1)
 self.inputFile = inputFile
 self.N = N

 def run(self):
 tempOutputFile = getTempFile(rootDir=self.getGlobalTempDir())
 self.addChildTarget(Down(self.inputFile, 0, os.path.getsize(self.inputFile), self.N,
tempOutputFile))
 self.setFollowOnTarget(Cleanup(tempOutputFile, self.inputFile))

class Cleanup(Target):
 """Copies back the temporary file to input once we've successfully sorted the temporary file.
 """
 def __init__(self, tempOutputFile, outputFile):
 Target.__init__(self)
 self.tempOutputFile = tempOutputFile
 self.outputFile = outputFile

 def run(self):
 shutil.copyfile(self.tempOutputFile, self.outputFile)

class Down(Target):
 """Input is a file and a range into that file to sort and an output location in which
 to write the sorted file.
 If the range is larger than a threshold N the range is divided recursively and
 a follow on job is then created which merges back the results else
 the file is sorted and placed in the output.
 """
 def __init__(self, inputFile, fileStart, fileEnd, N, outputFile):
 assert fileStart >= 0
 assert fileStart <= fileEnd
 Target.__init__(self, time=0.05)
 self.inputFile = inputFile
 self.fileStart = fileStart
 self.fileEnd = fileEnd
 self.N = N
 self.outputFile = outputFile

 def run(self):
 length = self.fileEnd - self.fileStart
 assert length >= 0
 if length > self.N:
 midPoint = getMidPoint(self.inputFile, self.fileStart, self.fileEnd)
 assert midPoint >= self.fileStart
 assert midPoint+1 < self.fileEnd
 #We will subdivide the file
 tempFile1 = getTempFile(rootDir=self.getGlobalTempDir())
 tempFile2 = getTempFile(rootDir=self.getGlobalTempDir())
 self.addChildTarget(Down(self.inputFile, self.fileStart, midPoint+1, self.N, tempFile1))
 self.addChildTarget(Down(self.inputFile, midPoint+1, self.fileEnd, self.N, tempFile2)) #Add
one to avoid the newline
 self.setFollowOnTarget(Up(tempFile1, tempFile2, self.outputFile))
 else:
 #We can sort this bit of the file
 copySubRangeOfFile(self.inputFile, self.fileStart, self.fileEnd, self.outputFile)
 sort(self.outputFile)

class Up(Target):
 """Merges the two files and places them in the output.
 """
 def __init__(self, inputFile1, inputFile2, outputFile):
 Target.__init__(self, time=0.05)
 self.inputFile1 = inputFile1
 self.inputFile2 = inputFile2
 self.outputFile = outputFile

 def run(self):
 merge(self.inputFile1, self.inputFile2, self.outputFile)

Wednesday, February 2, 2011

Running Job-tree/Script-tree
def main():
 parser = OptionParser()
 Stack.addJobTreeOptions(parser)

 parser.add_option("--fileToSort", dest="fileToSort",
 help="The file you wish to sort")

 options, args = parser.parse_args()

 if options.fileToSort == None:
 raise RuntimeError("No file to sort given")

 #Now we are ready to run
 i = Stack(Setup(options.fileToSort, int(options.N))).startJobTree(options)

 if i:
 raise RuntimeError("The jobtree contained %i failed jobs" % i)

if __name__ == '__main__':
 from workflow.jobTree.test.sort.Script-treeTest_Sort import *
 main()

benedict$ Script-treeTest_Sort.py --jobTree foo/Job-tree --logDebug --fileToSort bar.txt

Wednesday, February 2, 2011

Running Job-tree/Script-tree

Create a parser for the script and
add the Job-tree options to it.

benedict$ Script-treeTest_Sort.py --jobTree foo/Job-tree --logDebug --fileToSort bar.txt

def main():
 parser = OptionParser()
 Stack.addJobTreeOptions(parser)

 parser.add_option("--fileToSort", dest="fileToSort",
 help="The file you wish to sort")

 options, args = parser.parse_args()

 if options.fileToSort == None:
 raise RuntimeError("No file to sort given")

 #Now we are ready to run
 i = Stack(Setup(options.fileToSort, int(options.N))).startJobTree(options)

 if i:
 raise RuntimeError("The jobtree contained %i failed jobs" % i)

if __name__ == '__main__':
 from workflow.jobTree.test.sort.Script-treeTest_Sort import *
 main()

Wednesday, February 2, 2011

Running Job-tree/Script-tree

Parse the options and args

benedict$ Script-treeTest_Sort.py --jobTree foo/Job-tree --logDebug --fileToSort bar.txt

def main():
 parser = OptionParser()
 Stack.addJobTreeOptions(parser)

 parser.add_option("--fileToSort", dest="fileToSort",
 help="The file you wish to sort")

 options, args = parser.parse_args()

 if options.fileToSort == None:
 raise RuntimeError("No file to sort given")

 #Now we are ready to run
 i = Stack(Setup(options.fileToSort, int(options.N))).startJobTree(options)

 if i:
 raise RuntimeError("The jobtree contained %i failed jobs" % i)

if __name__ == '__main__':
 from workflow.jobTree.test.sort.Script-treeTest_Sort import *
 main()

Wednesday, February 2, 2011

Running Job-tree/Script-tree

Run Job-tree (alternatively
you can pass in the options to jobtre

manually and use your own options/args
parser)

benedict$ Script-treeTest_Sort.py --jobTree foo/Job-tree --logDebug --fileToSort bar.txt

def main():
 parser = OptionParser()
 Stack.addJobTreeOptions(parser)

 parser.add_option("--fileToSort", dest="fileToSort",
 help="The file you wish to sort")

 options, args = parser.parse_args()

 if options.fileToSort == None:
 raise RuntimeError("No file to sort given")

 #Now we are ready to run
 i = Stack(Setup(options.fileToSort, int(options.N))).startJobTree(options)

 if i:
 raise RuntimeError("The jobtree contained %i failed jobs" % i)

if __name__ == '__main__':
 from workflow.jobTree.test.sort.Script-treeTest_Sort import *
 main()

Wednesday, February 2, 2011

Running Job-tree/Script-tree

The command line

benedict$ Script-treeTest_Sort.py --jobTree foo/Job-tree --logDebug --fileToSort bar.txt

def main():
 parser = OptionParser()
 Stack.addJobTreeOptions(parser)

 parser.add_option("--fileToSort", dest="fileToSort",
 help="The file you wish to sort")

 options, args = parser.parse_args()

 if options.fileToSort == None:
 raise RuntimeError("No file to sort given")

 #Now we are ready to run
 i = Stack(Setup(options.fileToSort, int(options.N))).startJobTree(options)

 if i:
 raise RuntimeError("The jobtree contained %i failed jobs" % i)

if __name__ == '__main__':
 from workflow.jobTree.test.sort.Script-treeTest_Sort import *
 main()

Wednesday, February 2, 2011

Running Job-tree/Script-tree

Oh, and a little voodoo
required by
the pickler

benedict$ Script-treeTest_Sort.py --jobTree foo/Job-tree --logDebug --fileToSort bar.txt

def main():
 parser = OptionParser()
 Stack.addJobTreeOptions(parser)

 parser.add_option("--fileToSort", dest="fileToSort",
 help="The file you wish to sort")

 options, args = parser.parse_args()

 if options.fileToSort == None:
 raise RuntimeError("No file to sort given")

 #Now we are ready to run
 i = Stack(Setup(options.fileToSort, int(options.N))).startJobTree(options)

 if i:
 raise RuntimeError("The jobtree contained %i failed jobs" % i)

if __name__ == '__main__':
 from workflow.jobTree.test.sort.Script-treeTest_Sort import *
 main()

Wednesday, February 2, 2011

Restarting a job-tree

• A job-tree is run initially by executing the script.

• If it fails call:

• jobTree --jobTree FOO

• Where foo is the location of the jobTree

• The job-tree will restart from where it failed.

Wednesday, February 2, 2011

Cleaning up

• Once a job-tree finishes up you can check it
completed okay by running:

• jobTreeStatus --jobTree FOO

• Where FOO is the jobTree

• Adding the --verbose flag will print out any error
log files associated with failed jobs

• To finish up, simply delete the job-tree.

Wednesday, February 2, 2011

Job-tree/Script-tree Misc.

• Your environment variables are inherited from the executing shell, so you can
use relative path names and program names without stressing.

• Can run on a parasol cluster, a grid engine cluster, or in single machine mode
(using multiple threads), so you can test on a workstation before you push your
pipeline to the cluster.

• Is (theoretically) easily extended to work on another batch system - just inherit
the abstract batch system class.

Wednesday, February 2, 2011

Job-tree Summary

• Allows you to dynamically create arbitrarily parallelised batches of
jobs.

• Provides other nice features.

• Is stable and used by me, Dent, Krish, Charlie, Daniel, Ngan and run
by others, including Wendy, Ted, Bernard, etc.

• Unfortunately, the code is pretty dense and prototype-y, and there
are some clunky edges.

Wednesday, February 2, 2011

Utilities

• These next slides detail the utilities for job-tree

Wednesday, February 2, 2011

jobTreeStats

• Run as jobTreeStats --jobTree foo

• Reports status of tree, importantly telling you how many jobs are
failed etc.

• Verbose flag will report log files of failed jobs

• Output could be improved!

Wednesday, February 2, 2011

jobTreeKill

• To kill a jobtree, first kill the master process, then run:

• jobTreeKill --jobTree foo

• Kills all queued and running jobs associated with the job-tree on the
batch system (only works with parasol currently, not grid engine).

• Does not remove the batch (can be restarted again)

Wednesday, February 2, 2011

jobTreeStats: Balancing job-trees

• Your jobs on the cluster should run for some ‘ideal’ time in order to
efficient.

• Job-tree will attempt to agglomerate your short running jobs to
avoid paying scheduling costs (which may be a few seconds of
latency per job!)

• Running job-tree with --stats option allows you to run jobTreeStats
benedict$ Script-treeTest_Sort.py --jobTree foo/Job-tree --logDebug --fileToSort bar.txt --stats

benedict$ jobTreeStats --jobTree foo/Job-tree

Wednesday, February 2, 2011

jobTreeStats: Balancing job-trees

Example from
script-

treeTest_Sort.py

Wednesday, February 2, 2011

jobTreeStats: Balancing job-trees

Total runtime and
stats about job

tree.

Wednesday, February 2, 2011

jobTreeStats: Balancing job-trees

Times on targets,
which are

agglomerated into
jobs

Wednesday, February 2, 2011

jobTreeStats: Balancing job-trees

Times on
individual targets,

showing how
close your

estimated jobs
came to the actual

run-times

Wednesday, February 2, 2011

jobTreeStats: Balancing job-trees

This example ran
8193 targets, in a
single thread in

8.5 seconds!

Wednesday, February 2, 2011

jobTreeStats: Balancing job-trees

Times that the
slaves ran ‘jobs’,

in this case we’ve
asked for a job-
runtime of 0.5
seconds, the

actual average was
0.55 seconds

Wednesday, February 2, 2011

Grid-engine cluster

• PK cluster + memk + (shortly) kolossus

• Heterogenous cluster, with machines:

• from 2 to 64 cpus.

• from 4 to 1024 gigs of memory

• ~400 nodes

• Within the cancer firewall, still working out the kinks.

Wednesday, February 2, 2011

Charlie

Wednesday, February 2, 2011

Cancer Functional Genomics

Gene Expression

Copy Number Aberrations

DNA Methylation

Genomic Mutations

http://genome-cancer.ucsc.edu

Chromatin Structure

Metabolomics

Proteomics

Histone Marks

Data on the horizon:

Zhu J, Nature Methods, 2009

Wednesday, February 2, 2011

http://genome-cancer.ucsc.edu
http://genome-cancer.ucsc.edu

Gene Model

Variable

Factor - interaction term

GeneCopy
Number

Expression
State

Protein
Level

Protein
Activity

Wednesday, February 2, 2011

Gene Model

Variable

Factor - interaction term

GeneCopy
Number

Expression
State

Protein
Level

Protein
Activity

3-state discrete variables

relative to non-cancer,
is this sample:

up,
same,
down?

Wednesday, February 2, 2011

GeneCopy
Number

Expression
State

Protein
Level

Protein
Activity

Array CGH,
SNP chips Transcriptomics

Gene Model

Variable

Factor - interaction term

Wednesday, February 2, 2011

GeneCopy
Number

Expression
State

Protein
Level

Protein
Activity

Array CGH,
SNP chips Transcriptomics Proteomics,

mutations
Proteomics,
mutations

Gene Model

Variable

Factor - interaction term

Wednesday, February 2, 2011

GeneCopy
Number

Expression
State

Protein
Level

Protein
Activity

Transcriptional
Regulation

Translational
Regulation,

Protein Degradation

Intracellular and
Extracellular

Signaling

Array CGH,
SNP chips Transcriptomics Proteomics,

mutations
Proteomics,
mutations

Gene Model

Variable

Factor - interaction term

Wednesday, February 2, 2011

Pathway as genetic unit

intriguing relationship between the hypermutator phenotype and
MGMT methylation status emerged in the treated samples.
Specifically,MGMTmethylation was associated with a profound shift
in the nucleotide substitution spectrum of treated glioblastomas
(Fig. 4a). Among the 13 treated samples withoutMGMTmethylation,
29% (29out of 99) of the validated somaticmutations occurred asGNC
toANT transitions inCpGdinucleotides (characteristic of spontaneous
deamination of methylated cytosines), and a comparable 23% (23 out
of 99) of allmutations occurred asGNC toANT transitions in non-CpG
dinucleotides. In contrast, in the six treated samples with MGMT
methylation, 81% of all mutations (146 out of 181) turned out to be
of the GNC to ANT transition type in non-CpG dinucleotides, whereas
only 4% (8 out of 181) of all mutations were GNC to ANT transition
mutations within CpGs. That pattern is consistent with a failure to
repair alkylated guanine residues caused by treatment. In other words,
MGMTmethylation shifted themutation spectrumof treated samples
to a preponderance of GNC to ANT transition at non-CpG sites.

Notably, the mutational spectra in the MMR genes themselves
reflected MGMT methylation status and treatment consequences.
All seven mutations in MMR genes found in sixMGMTmethylated,
hypermutated (treated) tumours occurred as GNC to ANT mutations
at non-CpG sites (Fig. 4b and Supplementary Table 6), whereas
neither MMR mutation in non-methylated, hypermutated tumours
was of this characteristic. Hence, these data show that MMR defi-
ciency andMGMTmethylation together, in the context of treatment,
exert a powerful influence on the overall frequency and pattern of
somatic point mutations in glioblastoma tumours, an observation of
potential clinical importance.

Integrative analyses define glioblastoma core pathways

To begin to construct an integrated view of common genetic altera-
tions in the glioblastoma genome,wemapped the unequivocal genetic

alterations—validated somatic nucleotide substitutions, homozygous
deletions and focal amplifications—onto major pathways implicated
in glioblastoma1. That analysis identified a highly interconnected net-
work of aberrations (Supplementary Figs 7 and 8), including three
major pathways: RTK signalling, and the p53 and RB tumour sup-
pressor pathways (Fig. 5).

By copy number data alone, 66%, 70% and 59%of the 206 samples
harboured somatic alterations in core components of the RB, TP53
and RTK pathways, respectively (Supplementary Table 8). In the 91
samples for which there was also sequencing data, the frequencies of
somatic alterations increased to 87%, 78% and 88%, respectively
(Supplementary Table 9). There was a statistical tendency towards
mutual exclusivity of alterations of components within each pathway
(P-values of 9.33 10210, 2.53 10213 and 0.022, respectively, for the
p53, RB and RTK pathways; Supplementary Table 10), consistent
with the thesis that deregulation of one component in the pathway
relieves the selective pressure for additional ones. However, we
observed a greater than random chance (one-tailed, P5 0.0018) that
a given sample harbours at least one aberrant gene from each of the
three pathways (Supplementary Table 10). In fact, 74% harboured
aberrations in all three pathways, a pattern suggesting that deregula-
tion of the three pathways is a core requirement for glioblastoma
pathogenesis.

As well as frequent deletions and mutations of the PTEN lipid
phosphatase tumour suppressor gene, 86% of the glioblastoma sam-
ples harboured at least one genetic event in the core RTK/PI3K path-
way (Fig. 5a). In addition to EGFR and ERBB2, PDGFRA (13%) and
MET (4%) showed frequent aberrations (Supplementary Table 9). A
total of 10 of the 91 sequenced samples have amplifications or point
mutations in at least 2 of the 4 RTKs catalogued (EGFR, ERBB2,
PDGFRA and MET; Supplementary Table 9), suggesting that geno-
mic activation can be a mechanism for co-activated RTKs44.

a

b

EGFR ERBB2 PDGFRA MET

RASNF1

AKT

FOXO

PTEN

MDM4

TP53

MDM2

RB1

CDK4 CDK6CCND2

RTK/RAS/PI(3)K
signalling altered

in 88%

p53
signalling
altered
in 87%

RB
signalling
altered
in 78%

CDKN2CCDKN2BCDKN2A
(P16/INK4A)

Homozygous deletion,
mutation in 52%

Homozygous
deletion in 47%

Homozygous
deletion in 2%

Amplification
in 2%

Amplification
in 1%

Amplification
in 18%

G1/S progression

Activated oncogenes

ApoptosisSenescence

CDKN2A
(ARF)

Mutation, homozygous
deletion in 35%

Homozygous deletion,
mutation in 49%

Amplification in 7%

Amplification in 14%

Homozygous deletion,
mutation in 11%

Amplification in 2%

Mutation in 1%

Mutation in 2% Mutation in 15%

Mutation, homozygous
deletion in 36%

Amplification
in 4%

Amplification
in 13%

Mutation
in 8%

Mutation, amplification
in 45%

PI(3)K
Mutation, homozygous

deletion in 18%

Proliferation
survival

translation

c

Figure 5 | Frequent genetic alterations in three critical signalling
pathways. a–c, Primary sequence alterations and significant copy number
changes for components of the RTK/RAS/PI(3)K (a), p53 (b) and RB
(c) signalling pathways are shown. Red indicates activating genetic
alterations, with frequently altered genes showing deeper shades of red.
Conversely, blue indicates inactivating alterations, with darker shades

corresponding to a higher percentage of alteration. For each altered
component of a particular pathway, the nature of the alteration and the
percentage of tumours affected are indicated. Boxes contain the final
percentages of glioblastomas with alterations in at least one known
component gene of the designated pathway.

NATURE |Vol 455 |23 October 2008 ARTICLES

1065
 ©2008 Macmillan Publishers Limited. All rights reserved

The Cancer Genome Atlas,
Nature, 2008

Glioblastoma Multiforme

• No single gene is universally
recurrent

• Subsets of cellular network
(pathways) are much more recurrent

• Interaction sign matters

• Need many data types to find lesions

p53 signalling
altered in 87% of
patients overall

Wednesday, February 2, 2011

Integrated Pathway Activity (IPA)

Apoptosis

DNA mRNA Protein

Active
Protein

MDM2

DNA mRNA Protein
Active
Protein

TP53

MDM2

TP53

Apoptosis

• Abstract notion of a biological
entity’s activity within a pathway
context

• Calculate
log-likelihood ratio of up, same,
and down states

• IPA is the max of the three
states, multiplied by the sign of
the state

log10
P (Data|TP53 = up)
P (Data|TP53 �= up)

≈ 0.1

log10
P (Data|TP53 = same)
P (Data|TP53 �= same)

≈ −0.5

log10
P (Data|TP53 = down)
P (Data|TP53 �= down)

≈ 1.5

IPA(TP53) ≈ −1.5

×− 1

Wednesday, February 2, 2011

Observation Parameters

GeneCopy
Number

Expression
State

Protein
Level

Protein
Activity

Transcriptional
Regulation

Translational
Regulation,

Protein Degradation

Intracellular and
Extracellular

Signaling

Array CGH,
SNP chips Transcriptomics

Learn via Expectation-Maximization

Wednesday, February 2, 2011

jtParadigm.py
Expectation Step

Paradigm on pathway 1

Paradigm on pathway 2

Paradigm on pathway n

Maximization Step

Expectation Step

Paradigm on pathway 1

Paradigm on pathway 2

Paradigm on pathway n

Maximization Step

Final run on real and permuted samples

Paradigm on pathway 1

Paradigm on pathway 2

Paradigm on pathway n

Merge all output, create
summary plots

• Each E-step takes 1-200 hours
(depending on pathway DB, number
of samples)

• Don’t know number of EM steps
ahead of time, dynamically add jobs
until convergence

• Simple Python wrapper around
obtuse C++ program

Wednesday, February 2, 2011

mRNA Copy Number

Clinical

SurvivalTime

TumorSubtype

Genomic data

agent

categorical

survival

report

Wednesday, February 2, 2011

mRNA Copy Number

Clinical

SurvivalTime

TumorSubtype

hopach

ExprSubtype

Genomic data

agent

categorical

survival

report

Wednesday, February 2, 2011

mRNA Copy Number

Clinical

SurvivalTime

TumorSubtype

hopach

ExprSubtype

Genomic data

agent

categorical

survival

report

KM subtype
Wednesday, February 2, 2011

mRNA Copy Number

Clinical

SurvivalTime

TumorSubtype

hopach

ExprSubtype

Genomic data

agent

categorical

survival

report

KM subtype

KM expr

Wednesday, February 2, 2011

mRNA Copy Number

Clinical

SurvivalTime

TumorSubtype

hopach

ExprSubtype

Genomic data

agent

categorical

survival

report

KM subtype

KM expr

CnaSubtype

hopach

KM cna

Wednesday, February 2, 2011

mRNA Copy Number

Paradigm

IPLs

Clinical

SurvivalTime

TumorSubtype

hopach

ExprSubtype

Genomic data

agent

categorical

survival

report

KM subtype

KM expr

CnaSubtype

hopach

KM cna

Wednesday, February 2, 2011

mRNA Copy Number

Paradigm

IPLs

Clinical

SurvivalTime

TumorSubtype

hopach

ExprSubtype

Genomic data

agent

categorical

survival

report

KM subtype

KM expr

CnaSubtype

hopach

KM cna

PathwaySubtype

hopach
KM Pathway

Wednesday, February 2, 2011

Longboard

• System for running Paradigm and relevant
downstream analyses, built on JobTree

• Unlike other pipeline systems, it’s “agent” based–
agents run on every input that meets their input
filter

• In contrast, other systems require human
steering

• Cancer group doesn’t have enough people to
steer analysis of 20+ cancers in TCGA

mRNA Copy Number

Paradigm

IPLs

Clinical

SurvivalTime

TumorSubtype

hopach

ExprSubtype

Genomic

tool

categorical

survival

report

KM subtype

KM expr

CnaSubtype

hopach

KM cna

PathwaySubtype

hopach
KM Pathway

Wednesday, February 2, 2011

longboardRun.py
CouchDB

Patient
Cohort DB

Paradigm
Agents

Subtyping
Agents

Analysis
Agents (e.g.

KM plots)

Paradigm Agents

Paradigm v1 parameters 1

Super-pathway Paradigm

Paradigm Developmental

Subtyping Agents

Methylation subtypes

Paradigm v1 subtypes

Expression Subtypes

Analysis Agents

Kaplan-Meier Plot of Exp. Subtypes

Pathways up in each clinical stage

Correlation between Exp. and CNA

Wednesday, February 2, 2011

Daniel

Wednesday, February 2, 2011

RNAseq	
 pipeline
FastQ	
 read

BAM	
 files

Gene	
 	

expression/
Alterna9ve	

splicing

Pair	
 up	
 genes

Validate	

fusions

Split	
 reads/
Alignments

Split	
 chromosomes/
Gene	
 expressions

Split	
 chunks/
Find	
 connec9ons

Split	
 genes	
 pairs/
Search	
 for	
 spanning
reads

Wednesday, February 2, 2011

RNAseq	
 pipeline	
 2
RNA	
 BAM	
 files BAMBAM	
 files

Comparisons:
•Differen9al	
 allelic	

expression
•M u t a 9 o n	

expression?
•RNA	
 edi9ng?

Split	
 chromosomes/
Test	
 loci

Wednesday, February 2, 2011

