Adding tracks to the Human Genome Browser

Charles Sugnet

This talk, some sample files, etc. Can be found at:

http://www.soe.ucsc.edu/ sugnet/doc/trackHowto/

Adding tracks to the browser.

Talk Outline:
e Adding a standard track.

— Custom tracks - Great way to test stuff.
— Making tracks permanent - trackDb table.

— Common browser formats - beds, psls, etc.
e Customizing browser display and details page.

— Custom displays - Hacking the trackGroup data structure.
— Inheritance (kind of...) in hgTracks.

— Setting up custom displays in hgc program.
e Adding filters to tracks.

— Filters in hgTracks.
— Saving state in the cart.

— Introducing hgTrackUi.

The Browser

e At most basic level, browser is a

visualization tool for data. Common
reference is the genomic sequence,

metaphor is different “tracks” of data

layered on top of genomic sequence. Tools

Load
track
data

Query

for navigating, customizing, and
downloading the data. trackDb

e Two important parts:

hgTracks (browser)

1. The data. Putting data into database,

common formats are bed, psl, e =5

genePred.

2. The display. Loading, Drawing,

Customizing data.

As simple as cut and paste...

EBase Fosition 16575 a88] 16ES6aaE] 16555660a] 16596666] 16595 888]
Custam wersiohn of exoFizh tTrack

BEETHEM |

BEETHEM |

BEETHEO |

B8a7THEF

|| I
unigue best alignments of MGC Clones
Edﬁﬁﬁ419.1lBCBBB4 b 2 Db "
Khowh Gehes (from RefSed)
TE [+cfn

COMT [t el o

|| COMT L & i
Ex0f ish TetraodonsHuman Ewolutionarily Conserwed Reainns

BEE7THEM
BEETHEMN |

BAATHAED |
BaATHAEF

e Top two tracks are custom tracks pasted into the browser. Colors, names, scores, links, etc.

are configurable. Most of the browser tracks can be reproduced this way:.

e Fixofish track comes from tab-delimited bed file format. Paints continuous bases of genome

where high homology to Puffer Fish.

e MGC track comes from psl alignment file. Paints non-contiguous bases of the human

genome, but bases painted are linked to each other.

Everybody’s favorite: File Formats!

Browser knows how to visualize data from a number of different file formats. Internally tracks
are represented as simple bed structures and linkedFeatures structures. Externally tracks are

have a lot of different tab delimited formats but four main formats dominate.
1. Pat Space Alignments - .psl files generated by aligning sequences to genome using BLAT.

2. Simple Beds - .bed files, originally started with chrom, chromStart, chromEnd, name for-

mat.

3. Extended Beds - still .bed files but have grown to include many more fields and generalized

to include all the features of the other file formats.

4. Gene Predictions - Derived genePred structure, simpler version of psl format with extension

of cdsStart and cdsEnd. Mainly an internal format.

File Format Gotchas!

e Documentation: http://genome.ucsc.edu/goldenPath/help/customTrack.html and at:
http://genome.ucsc.edu/goldenPath/gbdDescriptions.html.

e The psl Gotcha (from ghdDescriptions.html): While gStart and qEnd are in relation to the plus strand

the gStarts|| are in relation to the negative strand.

0 1 2 3 tens position in query
0123456789012345678901234567890 ones position in query
++++ +++++ plus strand alignment on query
—————————————————— minus strand alignment on query
Plus strand:
gStart 12 gEnd 31 blockSizes 4,5 gStarts 12,26
Minus strand:

gStart 4 gEnd 26 blockSizes 10,8 gStarts 5,19

e Order of Bed Fields: Cannot change order of bed fields, i.e. if you want to include a value of the Nth
field you must include all N — 1 fields up to it.

The bin field.

As the tables in the browser database got bigger (i.e. Mouse homology tracks) the browser got significantly

slower. To speed up queries Jim implemented a binning scheme on a chromosome basis.

]
2 3 4 5
AHAB RN EEREEREEREA
A B -

e By placing features into the smallest bin in which they fit queries can be optimized by specifying the

bin instead of a time consuming range query.

e Because this optimization was implemented later in the design cycle, programs like autoSql don’t
know about it. For the most part don’t need to worry about if using hgl.oadBed or hglLoadPs1 to load

tables. If writing custom load function use hRangeQuery () to query for items.

e Note that the bin field is not present in a bed file, only in the database table. When specifying number
of fields in your track in trackDb.ra don’t include the bin field. Specifically you're much more likely
to have 12 fields rather than 13 for an extended bed.

Making a track permanent

e Browser relies on a table called trackDb to determine what tracks are available and how
they are to be displayed. Values include trackTypes, labels, colors, urls, html, etc. associ-

ated with the table. See kent/src/hg/makeDb/hgTrackDb/hgRoot/README for detailed

information.
e To create a track permanently:

1. Create table in database. Use program like hgl.oadBed, hgloadPsl, and hgloadRna
to load the tab delimited file containing data.

2. Create an entry in kent/src/hg/makeDb/hgTrackDb/hgRoot/trackDb.ra. Also
write an html blurb which will be written as an explanation of your track into file called
‘yvourTrackName’.html into same directory. (Note do not put <html><body> and
</html>< /body> in file.)

3. cvs add ‘yourTrackName’ html and cvs commit both the html file and trackDb.ra.

4. Do a “make update” in hgTrackDb directory:.

Checklist for adding a track.

O Put data in psl, simple bed, extended bed, or genePred format. (Preferably extended bed).
O Load data into hgN database using hgl.oadBed or hgLoadPs1.

O Do “cvs update -d’ in trackDb.ra directory. Create entry in trackDb.ra file and

create an html blurb in same directory in file ‘yourTrackName’. html.

O Do “cd .. && make update”. Spend some time testing the behavior of your track and
then
“cvs add ’yourTrackName’.html”

and “cvs commit ’yourTrackName’.html trackDb.ra’.

O Ask system administrators to push table and new trackDb.

Adding tracks to the browser.

Talk Outline:
e Adding a standard track.

— Custom tracks - Great way to test stuff.
— Making tracks permanent - trackDb table.

— Common browser formats - beds, psls, etc.
e Customizing browser display and details page.

— Custom displays - Hacking the trackGroup data structure.
— Inheritance (kind of...) in hgTracks.

— Setting up custom displays in hgc program.
e Adding filters to tracks.

— Filters in hgTracks.
— Saving state in the cart.

— Introducing hgTrackUi.

Hacking hgTracks Display

Ease Fosition| | 27ieaoaa] 27iSoeaa]
Ernowh Genes (from EefIZed)
MHEAMT 1
Fer legen Commont High-FEeso lution Haplotype Blocks,
EHEET44 i
Eaaaasa | | I || I 1 | BN | 1 | e mEiee 1 |
Eeal474 e
EHE2SSH [
Eoalodd e
EoalosT et

e Perlegen track is a unique type of track. Shows which haplotype blocks of SNPs can be tested for
using a small subset of SNPs.

e Data stored in familiar bed format. However custom display requested to help visualize break points
and recombination hot spots.

e The thicker middle line and custom sized smaller black tics for the SNPs requires a custom function.
Have to address code reusage issues, should old functions be refactored to allow new fuctionality or
create all new function?

e Either way time to override default behavior. In C++ or Java would inherit functionality from base
classes and customize particular function. In C, write the drawing function and assign it to function

pointer in trackGroup structure. Seems a little awkward at first but at least no virtual functions...

trackGroup Function Reference

e struct trackGroupx next

e voidx items

e Lots of other data values

e void (x loadItems)(struct trackGroup x*tg)

e void (x freeltems)(struct trackGroup xtg)

e charx (x itemName)(struct trackGroup xtg, void xitem)

e void (x drawltems)(struct trackGroup *tg, int seqStart, int seqEnd, struct memGfx *mg, int xOff, int
yOff, int width, MgFont x font, Color color, enum trackVisibility vis)

e Color (x itemColor)(struct trackGroup xtg, void xitem, struct memGfx *xmg)

e charx (x mapltemName)(struct trackGroup #tg, void *item)

e int (x totalHeight)(struct trackGroup *tg, enum trackVisibility vis)

e int (x itemHeight)(struct trackGroup xtg, void xitem)

e int (x itemStart)(struct trackGroup *tg, void *item)

e int (x itemEnd)(struct trackGroup xtg, void xitem)

e void (x mapltem)(struct trackGroup *tg, void xitem, char x itemName, int start, int end, int x, int y, int width, int
height)

e voidx extraUiData

e void (x trackFilter)(struct trackGroup *tg)

e voidx customPt

/* do some setup then enter core routine. Almost all of Jim’s strutures are also linked lists */
for(1f = tg->items; 1f != NULL; 1f = 1f->next)
{
/* draw the thick blue line from the start SNP to the stop SNP */
if (1f->components != NULL && 'hideLine)
{
/* find our pixel coordinates from genomic coordinates */
x1 = round((double) ((int)1f->start - winStart)*scale) + x0Off;
x2 = round((double) ((int)1f->end - winStart)*scale) + x0ff;
w = x2-x1;

/* get the base line color, in this case shade of blue and draw thick line with it */

color = shades[lf->grayIx+isXeno];
mgDrawBox (mg, x1, y+shortOff+l, w, shortHeight-2, color);
}
for (sf = 1f->components; sf != NULL; sf = sf->next)
{

color = perlegenColor(tg, 1f, sf, mg);
heightPer = perlegenHeight(tg, 1f, sf);
s = sf->start;

e = sf->end;

/* draw appropriate box, either a black small tic or blue large tic at the ends */
drawScaledBox(mg, s, e, scale, x0ff, y+((tg->heightPer - heightPer)/2), heightPer, color);

/* if we’re at the stop or start of a blockadd a black tick for the snp to the larger start tic */
if (heightPer == tg->heightPer)
drawScaledBox(mg, s, e, scale, x0ff,
y+((tg->heightPer - heightPer - 4)/2), (heightPer -4), blackIndex());

}
/* if we’re in full mode increment the height */
if (isFull) y += lineHeight;
3

Internal Representation for psls,genePreds, beds

struct simpleFeature
/* Minimal feature - just stores position in browser coordinates. */

{

struct simpleFeature *next;

int start, end; /* Start/end in browser coordinates. */
int grayIx; /* Level of gray usually. */

};

struct linkedFeatures
/* Container for multiple simple features that are linked together */

{
struct linkedFeatures *next;
int start, end; /* Start/end in browser coordinates. */
int tallStart, tallEnd; /* Start/end of fat display. */
int graylIx; /* Average of components. */
int filterColor; /* Filter color (-1 for none) */
float score; /* score for this feature */
char name[32]; /* Accession of query seq. */
int orientation; /* Orientation. */
struct simpleFeature *components; /* List of component simple features. */
void *extra; /* Extra info that varies with type. */
s
}

e Custom load routines usually involve writing functions that transform custom data into linkedFeatures,

and free them later.

e Check out Documentation at: http://www.soe.ucsc.edu/ sugnet/kentDoc/

Inheritance C style

e Want to provide default behavior for tracks, as it is cumbersome to do everything manually.

Yet need to provide mechanism for customizing trackGroup behavior.

e Meet void registerTrackHandler(char *name, TrackHandler handler) ; thisfunc-
tion registers a function pointer which will be called on the track of the same name.

e Example Code:

/* call to cutomize perlegen track */
registerTrackHandler ("perlegen",perlegenMethods) ;

void perlegenMethods(struct trackGroup *tg)

/* setup special methods for haplotype track */
{

tg->drawltems = perlegenlinkedFeaturesDraw;
tg->itemName = perlegenName;

tg->colorShades = shadesOfSea;

+

Detail pages:

e All detail pages are handled by hgc “human

genome click” program. Links are handled by

the mapItem function pointer in trackGroup

structure.

e hgc reads in track name, coordinates, and item track
name from cgi and uses them to generate html

page. Possible to use default page and link to

hge (details) hgTracks (browser)

outside resources using url string (i.e. B — :
http://somewhere.edu/$$.html). ** — e

Connected via links 3

e Customizing details page means writing cgi —

response in C and calling function in large

switch statement at end of hgc.

The “Large Switch Statement”

tdb = hashFindVal (trackHash, track);
if (sameWord(track, "getDna"))

{
doGetDnal () ;
}
/* ... bunch of other ’if(sameWord(track,'"someTrackName")’ checks ...x*x/

else if (sameWord(track, "perlegen"))

{
perlegenDetails(tdb, item);

}
else if(sameWord(track, "rosetta"))
{
rosettaDetails(tdb, item);
}
else if (tdb != NULL)
{

genericClickHandler(tdb, item, NULL);
}

else

{
cartWebStart (track) ;

printf ("Sorry, clicking there doesn’t do anything yet (%s).

webEnd () ;
}

", track);

Checklist for adding a track.

O Put data in genePred, psl, simple bed or extended bed format. (Preferably extended bed).
O Load data into hgN database using hgl.oadBed or hgLoadPs1.
O Add track information to trackDb.ra, don't forget cvs update, add, commit.

O Backup current version of hgTracks. Do not let hgTracks be dead in the water. cvs
update hgTracks.c. Add custom functions to hgTracks.c, testing as you go. Have

someone else look at your code. cvs commit when finished.

O Backup current version of hgc. Do not let hgc be dead in the water. cvs update hgc. c.
Add custom functions to hgc.c, testing as you go. Have someone else look at your code.

cvs commit when finished.

O Ask system administrators to push new table,trackDb, hgTracks, and hgc.

Adding tracks to the browser.

Talk Outline:
e Adding a standard track.

— Custom tracks - Great way to test stuff.
— Making tracks permanent - trackDb table.

— Common browser formats - beds, psls, etc.
e Customizing browser display and details page.

— Custom displays - Hacking the trackGroup data structure.
— Inheritance (kind of...) in hgTracks.

— Setting up custom displays in hgc program.
e Adding filters to tracks.

— Filters in hgTracks.
— Saving state in the cart.

— Introducing hgTrackUi.

Adding filters to your tracks.

Filters provide a way for user to customize the display. For example, coloring mRNAs from a particular
lab or excluding all ESTs that aren’t from a certain tissue. Filters are in general run when a track is being
loaded. Once items in the current coordinates have been loaded they are run through the filter to establish
if they should be displayed and if so what color, etc.

General idea:

e Create user interface in hgTrackUi. Currently a lot of details happen in hui.h and hgTrackUi is

mainly a big switch statement.

e Get ui fields of interest from cart. Cart works much the same as cheapcgi module. The cart is queried
by different functions of the form:

char *exonTypes = cartUsualString(cart, "rosetta.et", "Confirmed Only");

e Once data from user is loaded use it to “filter” item list that has been loaded. This can include
removing items, coloring items, etc. As long as at the end of filtering you have a linked list of

linkedFeatures.

e Let the rest of hgTracks work its magic...

hgTrackUi in the world.

hgc (details)

-

Connected via links.

hgTracks (browser)

hgCentral db

Load/Save
user state.

=g} _ad

Connected via links.

hgTrackUi (filter)

iy F i o 0 B o i

The

Browser

World.

hgText (data)

-
Load track data.

hgc (details)

Connected via links.

-

hgTracks (browser)

hgCentral db

Load/Save
user state.

'

g

Connected via links.

hgTrackUi (filter)

Micrmarray 1t porioms for 18w L

Checklist for adding a track.

O Put data in genePred, psl, simple bed or extended bed format. (Preferably extended bed).
O Load data into hgN database using hgloadBed or hgloadPsl.
O Add track information to trackDb.ra, don’t forget cvs update, add, commit.

O Backup current version of hgTracks. Do not let hgTracks be dead in the water. cvs update
hgTracks.c. Add custom functions to hgTracks.c, testing as you go. Have someone else look at

your code. cvs commit when finished.

O Backup current version of hgTrackUi. Do not let hgTrackUi be dead in the water. Add code to
display user interface, keep things common to hgTracks and hgTrackUi in hui.h. Add code to
implement filters (usually in your loading function). Again do testing and have someone else check

you code when finished. cvs commit when finished.

O Backup current version of hgc. Do not let hgc be dead in the water. cvs update hgc.c. Add custom

functions to hgc. c, testing as you go. Have someone else look at your code. cvs commit when finished.

O Ask system administrators to push new table,trackDb, hgTracks, hgTrackUi and hgc.

Tips and tricks

e Use a debugger (ddd?) and take the time to walk through your routines and make sure they’'re doing
what you think they should. cgiSpoof () allows cgi program to take arguments on the command line

of the form: someCgiProgram cgiVarl=<valuel> cgiVar2=<value2> etc.

e Learn to use cvs and live by it. Can get tricky with lots of people adding/changing things in different
programs. Never ever edit the files in $CVSROOT (aka /projects/compbio/cvsroot).

e In general open files read only. (C-x C-r in emacs, use view instead of vi).

e Please respect the style guide. 1 have an emacs style which will automatically format code for you

(sugnet /jkent-c.emacs).
e Always write a README file, helps everyone.

e May be a little much at first, over 80,000 lines of code just in the core libraries and browser programes,
over 280,000 lines in kent/src. But well worth it! Code to do alignments, parse gff, fasta files, all
sorts of other code tested in the fiery pit of 1024 CPUs.

