Discovering. Delivering. Yielding.

Introduction to Monsanto

Andrew Davis, Brad Fabbri, Barry Goldman, Mike Kerns, Mike Lohuis, Todd Michael

Notes

Certain statements contained in this presentation are "forward-looking statements," such as statements concerning the company's anticipated financial results, current and future product performance, regulatory approvals, business and financial plans and other non-historical facts. These statements are based on current expectations and currently available information. However, since these statements are based on factors that involve risks and uncertainties, the company's actual performance and results may differ materially from those described or implied by such forward-looking statements. Factors that could cause or contribute to such differences include, among others: continued competition in seeds, traits and agricultural chemicals; the company's exposure to various contingencies, including those related to intellectual property protection, regulatory compliance and the speed with which approvals are received, and public acceptance of biotechnology products; the success of the company's research and development activities; the outcomes of major lawsuits; developments related to foreign currencies and economies; successful operation of recent acquisitions; fluctuations in commodity prices; compliance with regulations affecting our manufacturing; the accuracy of the company's estimates related to distribution inventory levels; the company's ability to fund its short-term financing needs and to obtain payment for the products that it sells; the effect of weather conditions, natural disasters and accidents on the agriculture business or the company's facilities; and other risks and factors detailed in the company's most recent reports on Forms 10-Q and 10-K. Undue reliance should not be placed on these forwardlooking statements, which are current only as of the date of this presentation. The company disclaims any current intention or obligation to update any forward-looking statements or any of the factors that may affect actual results.

Monsanto Imagine and the Vine Design, Channel, Channel Bio, D&PL, Deltapine, DEKALB, DEKALB and Winged Ear Design, When Performance Counts, Asgrow, Asgrow and Design, Acceleron, Acceleron and Design, Apex, Biotech Yield Endorsement, BYE, Bollgard, Bollgard II, Bollgard and Design, Bollgard II and Design, Corn States Triangle Design, Cotton States, Cotton States and Design, Discovering, Delivering, Yielding., EarthMap Solutions and Design, Genuity, Genuity and Design and Genuity Icons, Growing Yield Sustainably, Our Science Your Success and Design, Processor Preferred, Produce More, Conserve More, Roundup, Roundup PowerMax, Roundup Pro, Roundup ProMax, Roundup Ready, Roundup Ready 2 Yield, Roundup Powerful Performance and Design, Roundup Ready Rate and Design, Noundup Rewards, Roundup Technology, Roundup WeatherMax, SmartStax, SmartStax and Design, Vistive, Vistive and Design, YieldGard, YieldGard Rootworm and Design, YieldGard Corn Borer and Design, YieldGard Plus and Design, YieldGard VT, YieldGard VT and Design, YieldGard VT Triple, YieldGard VT Rootworm/RR2, YieldGard VT Triple PRO, VT Triple PRO, Vectran, Seminis, Seminis Vegetable Seeds and Design and De Ruiter are trademarks and service marks owned by Monsanto Company and its wholly owned subsidiaries. All other trademarks are the property of their respective owners.

RR = Roundup Ready; YGCB = YieldGard Corn Borer; RR2 = Roundup Ready Corn 2; YGVT = YieldGard VT; YGRW = YieldGard Rootworm; RR2Y = Roundup Ready 2 Yield; RRF = Roundup Ready Flex

Monsanto is 100% Focused on Agriculture

Monsanto Company is a leading global provider of technology-based tools and agricultural products that improve farm productivity and food quality.

Our Mission

We work to deliver agricultural products and solutions to:

- Meet the world's growing food needs
 - Conserve natural resources
 - Protect the environment

"We succeed when farmers succeed."

-Hugh Grant, Monsanto CEO

Monsanto Company at a Glance

A LEADER IN THE FIELD OF AGRICULTURAL TECHNOLOGY

MONSANTO'S VITAL STATISTICS

- A leader in seeds, crop protection and biotechnology
- Headquartered in St. Louis
- Employs more than 21,000 people worldwide
- More than 500 locations worldwide in 5 primary regions

 Europe/Africa, Asia Pacific, India, Latin America and North America

Dedicated To Bringing The Next Generation Of Ag Products To The Market

Global Demand For Crops Projected to Grow Dramatically as Population/Income Continues to Rise

Cumulative Global Biotech Crop Acreage Surpassed Two Billion Acres in 2008

PROJECTED TO EXCEED 3 B CUMULATIVE ACRES IN 2011 AND 4B CUMULATIVE ACRES BY 2015

Source: ISAAA Brief 39 (2008)

Agriculture is at the intersection of huge global challenges

...increasing need for sustainable, and efficient food and feed production systems for a growing population Increased Demand for Grain

Agriculture

UN expertsdouble food production to feed 9.3 billion people by 2050

Increase Demands on Natural Resources

Climate Change

Sustainable Yield Initiative

By 2030, Monsanto commits to help farmers produce more and conserve more by:

- Seeds that help farmers double yields (from a year 2000 basis) for corn, soybeans and cotton, with a \$10 million grant pledged to improve wheat and rice yields.
- Seeds that help conserving resources that use one-third fewer key resources per unit of output to grow crops while working to lessen habitat loss and improve water quality.
- Helping improve the lives of all farmers, including an additional five million people in resource-poor farm families by 2020.

What Does it Mean to Double Yield in the U.S.by 2030?

2000 Baseline: 137 bu/ac 2030 Goal: 300 bu/ac

2000 Baseline: 37 bu/ac 2030 Goal: 80 bu/ac

2000 Baseline: 632 lbs/ac 2030 Goal: 1,300 lbs/ac

How Are We Going to Reach These Goals?

Breeding Creates new, more robust varieties that perform better in the field. Biotech Adds special beneficial genes to the plant. Agronomics Agronomic practice improvements make acres more productive. Unlike the initial 'simple' agronomic trait products, Yield is a complex biological trait bringing new challenges to Biotech & Breeding-driven product development

Yield Improvement is not just the result of Biotech & Breeding advancements

For example: Agronomic Practice Improvements are Expected to Contribute to a ~10 bu/ac Corn Yield Gain in the U.S.

AGRONOMIC PRACTICE	BENEFIT
Fungicides fungicide	Using Headline [®] fungicide in an acre of corn can bring a 10 to 13.5 Bu/A benefit to the grower.
Plant Populations	More strategic planting densities can increase bushels per acre, even with today's traits and genetics.
Precision Agriculture	More precise use of every acre - from GPS-guided tractors to GIS to yield mapping - allows growers to maximize use of inputs and land to get the best return on investment.
Seed Treatments	New treatments to be commercialized with the launch of Genuity [™] SmartStax [™] should add an incremental yield benefit.

IMPROVEMENTS IN AG PRACTICES HAVE ALREADY CONTRIBUTED ABOUT 40% TO YIELD GAINS

Headline is a registered trademark of BASF Corporation

Monsanto Technology: What We Do

Reduce science to practice in order to provide useful products to our farmer customers to make them more productive

Monsanto is a genomics-driven seeds and traits business

Sustained investment in genomics technology

- State of the art facilities for high-throughput genotyping

 Capacity to analyze tens of millions of samples per year
- Recent investment in Pacific Biosciences and their potentially disruptive third-generation sequencing platform
- Access to Cellectis meganuclease technology for sitedirected gene integration and other use

Monsanto Spends More on Seed and Biotech R&D Than Any Other Company

COMPANY RESEARCH-AND-DEVELOPMENT EXPENDITURE IN SEEDS & BIOTECHNOLOGY - FY2008

Source: Monsanto, Phillips McDougall and SEC Filings

Breeding and Biotech Provide Parallel & Complementary R&D Paths to Commercial Products

Monsanto has an Efficient and Well-Developed Transgenic Product Pipeline Process

Time estimates are based on our experience; they can overlap. Total development time for any particular product may be shorter or longer than the time estimated here.

Our Transgenic Pipeline Supports the Need for Rapid Development of Multiple New Traits

Biotechnology

Molecular expertise organized in self-sufficient project teams

High-throughput process automation and supporting data systems

Modular "Pipeline" Infrastructure for Corn, Soy, Canola, Cotton & Wheat Product Development

Gene nomination & Prioritization

Transformation & R1 Seed Production

Seed Bulk-up & Hybrid Production GH Screens & Field testing

Data Analysis & Lead Advancement

 Supports both Proof of Concept & Early Development ✓ Quality Control & Continuous Improvement

Discovery	Phase 1	Phase 2	Phase 3	Phase 4
Discovery	Proof of Concept	Early Development	Adv. Development	Pre-Launch

Example-- Leads identified in all major pathways associated with plant water utilization

Early Gene Leads Work To Improve the Ways in Which Plants Use Water

BUILDING A FAMILY OF GENES CONVEYING DROUGHT TOLERANCE

Example: Nitrogen Utilization Corn Targets Ways to Use Nitrogen More Efficiently

PROVIDES FARMER BENEFITS AND ENVIRONMENTAL BENEFITS

- Can potentially boost yield under normal nitrogen conditions or stabilize it in low nitrogen environments
- Under limited nitrogen conditions, lead trait has demonstrated yield advantages over multiple years
- Can reduce agriculture's overall impact on the environment

Discovery

Phase 1 Proof of Concept Phase 2 Early Development Phase 3 Adv. Development Phase 4 Pre-Launch

Launch

Exciting Future Corn Products in Our R&D Pipeline

Commercialization dependent on many factors, including successful conclusion of regulatory process

Example: Soy Yield Improvement Results From Our Transgene's Ability To Regulate A Plant System

An Advanced Soy Yield Lead

Control

With Transgene

Two lead events show average yield advantage of 7.4% and 6.7% over controls in meta analysis across three seasons of testing in 56 environments

Modified Plant System Improves Growth

Key Soybean Projects in our R&D Pipeline

PRODUCT	BENEFIT
Omega-3 Soybeans	 Product similar to soybean oil in taste, shelf-life and oil stability; represent a land-based source of essential Omega- 3 fatty acids
Vistive® III Soybeans	 Would offer enhanced fry stability; lowers linolenic and saturate content of soybean oil while boosting oleic content
Dicamba-Tolerant Soybeans	 Provide new, unique mode of action; designed to provide soybean growers with most effective weed management system available when stacked with Genuity™ Roundup Ready 2 Yield[®]
Higher-Yielding Soybeans	• 2 nd and 3 rd -generation products projected to provide incremental 10% yield increase when stacked with previous products; targeting multiple mechanisms to increase yield including stress reduction, biomass improvement and improved sink-source relationships

Commercialization dependent on many factors, including successful conclusion of regulatory process

Sharing of Monsanto Technology to Aid Farmers in the Developing World

Water Efficient Maize for Africa (WEMA)

FRICAN AGRICULTURAL TECHNOLOGY FOUNDATION ONDATION AFRICAINE POUR LES TECHNOLOGIES AGRICOLES

MONSANTO

VAT

THREE

PHASES

MODERN

AFRICA

AGRICULTURAL

PROGRESS IN

KEY

OF

imagine*

ARC • LNR

1 Establish modern infrastructure to make the most of current available resources and agricultural practices.

2 Educate and provide access modern agricultural practices, such as hybrid seed, fertilizer and farm machinery.

3 Make available the tools of molecular breeding and biotech, such as drought tolerance, to take developing world ag to the next level

REGULATORY AND SCIENTIFIC PROGRESS BEING MADE IN KEY AFRICAN COUNTRIES

Different Technologies Provide Breeders Options to Select the Right Tools for the Job

Conventional Breeding Best platform overall for improvement Genetic markers and marker assistance •A more precise way of finding desirable traits •Improves accuracy of trait advancement, speed of trait development and efficiency Biotechnology
Efficient, accurate introduction of traits not available within species
Additive features -

trait stacking

Flexible use of multiple technologies gets the job done

Breeding is Undergoing a Technical Revolution that will Significantly Impact Yield and Trait Potential

CORN SEED GERMPLASM LIBRARY Is Our Building Block for Better Breeding

Annually, breeders exchange more than a million different "packages" of germplasm material

 >50% of Monsanto's corn hybrids result from intra-company crosses MOLECULAR BREEDING Accelerating the Rate of Gain Over Conventional

- Capability to analyze 10s of millions of samples
- 3 million marker-trait associations providing detailed genome understanding

Example: Breeding For Better Resistance to Soybean Pests Helps Growers Protect and Increase Yield Potential

ENABLING GROWERS TO REDUCE COSTS ASSOCIATED WITH INSECTICIDE APPLICATION

- In 2003, over 42 M acres were infested with soybean aphids
- Major pest in North Central U.S. growing region (nearly 61 M ac)
- Currently using markers to develop breeding populations and introduce resistance genes

Resistance to Aphids in Soybean is Advancing through Use of Marker Technology

Breeding & Biotech Will Soon be Utilized to Create a Valuable Wheat Platform

REDUCING FERTILIZER USE AND DROUGHT TOLERANCE ARE CORE BIOTECH TRAIT OPPORTUNITIES IN WHEAT

CORN PLATFORM

BREEDING:

- Leading marker
 platform
- Commercialscale breeding program

BIOTECH:

- Current commercial traits
- Robust pipeline, including yield & stress

MONOCOT PLATFORM Monocots are the category of plants generally including grasses and grains	WHEAT PLATFORM Annual Monocot
Strong Baseline Genomics Maps and Strategies	Established Private Germplasm For Screening and Development
Breeding Technology and Tools (Marker-Trait Associations)	Rapid Development of Step-Change Varieties
Identified, Applicable Biotech Trait Leads	Immediate Trait Leads + Access to Trait Pipeline
	The state of the

Monsanto is leveraging its core capabilities and technologies to improve wheat

Next Step: Genomic Sequence-Enabled Product Pipeline Test populations Products Breeding pipeline • Transgenic plants **Genetic Engine** Validation Implementation •High throughput genotyping •Whole genome Prediction sequencing Seed chipping Accurate, **Data Mining** sophisticated genetic modeling tools Characterization of germplasm diversity Enabling **Biodiversity** Phenotype Environment **IT Systems and Tools Platforms** • Data Storage and access • Automated algorithms Decision making **Base Information and Systems**

The Key to Making Use of Genomic Data Is Linking it to Crop Performance & Phenotypic Data

Rich, Unique Datasets Are Generated Across Technology

Our Datasets Are Derived From Multiple Sources, and are Getting Larger & More Complex

We broadly apply these data and analysis across our product pipeline

Huge data sets are only useful if the right information can be extracted to drive product development

Computational Models

Functional Studies

Bioinformatics And Computational Analysis Are The Keys To Extracting Information from Data

Data and Systems Management

- Making sure we can get at the data
- Making sure we have IT infrastructure to handle the data (next-next generation sequencers will require gigabit data transfer speed and petabyte storage capacity)
- User interface to streamline data access and use

We care about finding genes and understanding the interaction between gene location and function

Putting These Datasets To Valuable Use Is Critical!

Moving towards converting DATA to INFORMATION resulting in PREDICTIVE MODELS for Complex Systems

Establishing predictive tools yields a more efficient product pipeline

Monsanto has many Alliances and Collaborations with other Companies and Academic institutions

		100		100					1000						
Company Name	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Ecogen															
Mendel (I-IV)															
Millennium															
Paradigm-Icoria															
Land O'Lakes/FGI															
Rosetta															
Ceres															
Affymetrix															
Rosetta															
Devgen (I & II))															
Divergence															
Targeted Growth															
Arcadia															
Modular Genetics									-						
Athenix															
Diagnostic I															
Solae															
BASF															
Chromatin															
Diagnostic II															
Senesco															
Evogene															

Partial list of Monsanto alliance partners.

Thank You!