
Bringing Web 2.0 to the UCSC
Genome Browser

Larry Meyer
UCSC Bioinformatics Dept.

http://hgwdev.cse.ucsc.edu/~larrym/presentations/genecats.ppt

Apologies

•  Sorry for using the phrase “Web 2.0”.

A short history of UIs…

1800s

•  Slow
•  Didn’t work

Charles Babbage’s Difference Engine

1940s

ENIAC

1960s

IBM 360 Series 2A/753x

1970

Unix shell

1972

IBM 3270 Terminal

1975

EMACS

1984

MacOS

1994

1995

HTML is Lame
•  Very primitive UI elements
•  No dialogs
•  Click and wait UI:

– Every user action requires round trip to the
server and redrawing the whole page

•  Javascript very poorly supported until early/mid
2000s, so there was little that developers could
do, other than using Flash or Java (which require
plugins and are poorly integrated with the
browser).

2007

2008

•  Donna encouraged Tim and I to start using
Javascript to improve the UI:
– Open/Close of track groups without doing a

page refresh
– Subtrack setting widget in hgTrackUi

•  Zack and Steve used jQuery to do the
Cancer Browser UI
–  I saw Steve’s demo and started using jQuery

in the GB

What is “Web 2.0”?

•  web 1.0 == IBM 3270 with colors
•  web 2.0 == client-server with a really hard

to program client

Mark Diekhans

What is “Web 2.0”?

•  Javascript to improve UI
•  AJAX: Client side code interacts with the

server without explicit user action
•  Web Services: JSON based API

What is JSON?

•  Javascript Serialized Object Notation
•  Serialized Javascript objects
•  Supported types:

– Scalar (string, number or boolean)
– Array
– Hash

•  De facto standard used by Javascript
programs to fetch data from servers

JSON vs. XML

vs.

JSON
{
 "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address":
 {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021“
 },
 "phoneNumber":
 [
 {"type": "home", "number": "212 555-1234" },
 { "type": "fax", "number": "646 555-4567" }
]
}

XML
<Person>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 <age>25</age>
 <address>
 <streetAddress>21 2nd Street</streetAddress>
 <city>New York</city>
 <state>NY</state>
 <postalCode>10021</postalCode>
 </address>
 <phoneNumber type="home">212 555-1234</phoneNumber>
 <phoneNumber type="fax">646 555-4567</phoneNumber>
</Person>

JSON
•  Pros

–  Parsing is built into javascript implementations
–  Maps better to data structures
–  More succinct (no closing tags)
–  Easier to read
–  Much simpler syntax
–  Only one way to do it

•  Cons
–  Less powerful (e.g. can’t embed binary data)
–  No built in schemas

JBrowse JSON example
{
 "headers":["start","end","strand","id"],
 "histBinBases":1000,
 "featureCount": 2462,
 "featureNCList":
 [
 [28734,16400072,
 {"path":"data/tracks/chr1/CpGIslands//lazyfeatures-0.json","state":"lazy"},
 null,null],
 [16464375,43251082,
 {"path":"data/tracks/chr1/CpGIslands//lazyfeatures-493.json","state":"lazy"},
 null,null],
 ...
],
 "key":"CpG Islands",
 "histogram":[0,0,0, ...],
 "className":"basic",
 "clientConfig":{"featureCss":"background-color: #0D0;
 height: 8px","histCss":"background-color: #3D3"},
 "rangeMap":[],
 "label":"CpGIslands",
 "type":"FeatureTrack",
 "sublistIndex":4
}

http://jbrowse.org/ucsc/hg19/data/tracks/chr1/CpGIslands/trackData.json

jQuery: Javascript Library

•  Hides most cross-browser differences
•  Lots of built in functionality (ajax etc.)
•  Very active user community (hundreds of user

contributed UI widgets)
•  Lots of books and online resources
•  Hopefully will become the de-facto UI toolbox for

web browsers (analogous to Mac Toolbox,
Windows GDI and X Windows API).

•  jQuery UI library supports modal dialogs

jQuery (cont.)

•  Powerful DOM element selector syntax:
$("map[name!=ideoMap]").each(function(index)
 {

 parseMap(this, false);

 });

This code snippet applies the parseMap
function to each map element whose
name is not “ideoMap”.

Drag and Select

Drag and Select
•  Hiram suggested this to me
•  Ideal application of Javascript: simple, valuable UI

addition that has to be implemented on the client side
•  Issues:

–  Track Image is very crowded, so currently you have to
select at the top of the image

–  We have had a least one serious browser issue: a
bug in Chrome/Safari that we couldn’t work around;
bug was fixed relatively quickly because a genome
browser user complained to the AppleWebKit team

Gene Search Box

Gene Search Box
•  Inspired by me getting tired of searching

for “TP53” 20 times a day
•  Dent Earl suggested the google suggest-

style interface
•  Fast Uptake showed that it was self

explanatory (~10k uses/day within a week)

JSON/RPC

•  Gene search box is a classic AJAX application
–  As user types, client side Javascript code sends prefix to server,

which responds with a list of genes
–  Server side code is very fast (simple select on an indexed field

in knownGenes/refGene tables)
–  Avoids search page, so it eliminates a whole web page refresh
–  Self explanatory functionality
–  Client/Server interaction is via a JSON interface

•  Interaction b/n client and server is essentially an
asynchronous RPC
– char **getGeneList(char *prefix)

Example of a JSON RPC

Client Side Server Side

Client Side only
No network I/O, so not susceptible
to network latency

AJAX
Susceptible to network latency,
which limits utility for more
interactive functionality

Alternative Gene Search Box
Implementation (ala jBrowse)

•  Could pre-compute lookup lists for all assemblies and
store them as static JSON files (~ 1 meg each)

•  Client retrieves assembly specific lookup file when page
is loading (cached after first time)

•  Client side code does the lookup synchronously
•  Pros

–  No delay on client side
–  Removes CGI hits, so less overhead on server

•  Cons
–  Client side code is more complex
–  More complex build environment

Pure AJAX App
•  All of the UI is constructed and run on the client side; there are no

HTML form submissions; e.g. the cancer browser, modern email
apps (gmail, yahoo, zimbra)

•  Pros
–  Usually yields a better UI
–  Forces separation between UI code and data, so it’s easier to

plugin a different UI (e.g. iPad/android)
–  Easier to pull in 3rd party data

•  Cons
–  GB already has a lot of server side UI code
–  History is complicated (no more back button; this may actually

be a good thing)
–  Javascript may cause performance issues (e.g. if you try to

render on the client side)

Cancer Browser

BioIntegrator

Coming Attractions

•  Track settings dialog
•  Context menu for track items
•  Track search
•  Drag panning
•  Drag reorder of tracks

Track Search

Track Search

AJAX is used to change select box when user chooses a different
metadata field

Context Menus

Track Settings Dialog

hgApi

•  Experimental JSON API interface
– getTrackList (used by steve’s experimental

integrated CB/GB tool)
– getMetaData (used by track search)

http://hgwdev-larrym.cse.ucsc.edu/cgi-bin/hgApi?db=hg18&cmd=trackList

Future Directions

•  Richer JSON RPC interface? (For our own
client side apps and perhaps 3rd parties as
well):
– getTrackList
– getTrackImages
– getTrackDetails

•  Requires refactoring of some of our code
so it can output either html or json

Pitfalls

•  You can end up DOS’ing yourself (DOS ==
Denial of Service)
– Tooltips in very dense track map

•  Too much usage and/or too sophisticated an
interface can burden your servers; e.g. Gene
Suggest for “A” in hg18 yields a list 163kb long.

•  Very dependent on Javascript, so your apps can
break spectacularly with new browser releases

Pitfalls (cont.)

•  hgTracks startup time is slow; large
overhead from loading tracks (100-200
milliseconds)
– A robust JSON based API would require

something faster, perhaps something
embedded in the web server (e.g. mod_perl)
or a dedicated process listening on another
port (e.g. node.js).

– This issue can be mitigated by using pre-
computed static JSON files

Pitfalls (cont.)

•  If you make your APIs public and third-
parties start to use them, then you can’t
arbitrarily change them (i.e. public APIs
have development, support, testing and
staging overhead).
– JSON APIs should be easier to change than

binary ones (e.g. adding hash keys shouldn’t
break existing code)

Pitfalls (cont.)

•  You have to test on all supported
browsers:

Browser January, 2010 June, 2010

Internet Explorer 39.7% 40.6%
IE8 13.1% 15.9%
IE7 15.9% 15.8%
IE6 10.5% 8.5%
FireFox 37.4% 36.2%
Safari 12.7% 10.2%
Chrome 4.3% 5.5%

GB stats from awstats

Acknowledgments

•  Jim Kent, David Haussler, Donna
Karolchick, Kate Rosenbloom, Tim
Dreszer, Hiram Clawson, Mark Diekhans
and Angie Hinrichs

•  Dent Earl, Steve Benz and Zack Sanborn

